Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3408, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649351

RESUMO

De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , PPAR gama , Humanos , Ligantes , PPAR gama/metabolismo , PPAR gama/agonistas , PPAR gama/química , Sítios de Ligação , Ligação Proteica
2.
RSC Adv ; 14(7): 4492-4502, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312732

RESUMO

Rational structure-based drug design relies on accurate predictions of protein-ligand binding affinity from structural molecular information. Although deep learning-based methods for predicting binding affinity have shown promise in computational drug design, certain approaches have faced criticism for their potential to inadequately capture the fundamental physical interactions between ligands and their macromolecular targets or for being susceptible to dataset biases. Herein, we propose to include bond-critical points based on the electron density of a protein-ligand complex as a fundamental physical representation of protein-ligand interactions. Employing a geometric deep learning model, we explore the usefulness of these bond-critical points to predict absolute binding affinities of protein-ligand complexes, benchmark model performance against existing methods, and provide a critical analysis of this new approach. The models achieved root-mean-squared errors of 1.4-1.8 log units on the PDBbind dataset, and 1.0-1.7 log units on the PDE10A dataset, not indicating significant advantages over benchmark methods, and thus rendering the utility of electron density for deep learning models context-dependent. The relationship between intermolecular electron density and corresponding binding affinity was analyzed, and Pearson correlation coefficients r > 0.7 were obtained for several macromolecular targets.

3.
Commun Chem ; 6(1): 256, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985850

RESUMO

Enhancing the properties of advanced drug candidates is aided by the direct incorporation of specific chemical groups, avoiding the need to construct the entire compound from the ground up. Nevertheless, their chemical intricacy often poses challenges in predicting reactivity for C-H activation reactions and planning their synthesis. We adopted a reaction screening approach that combines high-throughput experimentation (HTE) at a nanomolar scale with computational graph neural networks (GNNs). This approach aims to identify suitable substrates for late-stage C-H alkylation using Minisci-type chemistry. GNNs were trained using experimentally generated reactions derived from in-house HTE and literature data. These trained models were then used to predict, in a forward-looking manner, the coupling of 3180 advanced heterocyclic building blocks with a diverse set of sp3-rich carboxylic acids. This predictive approach aimed to explore the substrate landscape for Minisci-type alkylations. Promising candidates were chosen, their production was scaled up, and they were subsequently isolated and characterized. This process led to the creation of 30 novel, functionally modified molecules that hold potential for further refinement. These results positively advocate the application of HTE-based machine learning to virtual reaction screening.

4.
Curr Opin Struct Biol ; 79: 102548, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842415

RESUMO

Structure-based drug design uses three-dimensional geometric information of macromolecules, such as proteins or nucleic acids, to identify suitable ligands. Geometric deep learning, an emerging concept of neural-network-based machine learning, has been applied to macromolecular structures. This review provides an overview of the recent applications of geometric deep learning in bioorganic and medicinal chemistry, highlighting its potential for structure-based drug discovery and design. Emphasis is placed on molecular property prediction, ligand binding site and pose prediction, and structure-based de novo molecular design. The current challenges and opportunities are highlighted, and a forecast of the future of geometric deep learning for drug discovery is presented.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , Redes Neurais de Computação , Descoberta de Drogas/métodos , Aprendizado de Máquina , Ligantes
5.
ACS Omega ; 8(2): 2046-2056, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687099

RESUMO

Lipophilicity, as measured by the partition coefficient between octanol and water (log P), is a key parameter in early drug discovery research. However, measuring log P experimentally is difficult for specific compounds and log P ranges. The resulting lack of reliable experimental data impedes development of accurate in silico models for such compounds. In certain discovery projects at Novartis focused on such compounds, a quantum mechanics (QM)-based tool for log P estimation has emerged as a valuable supplement to experimental measurements and as a preferred alternative to existing empirical models. However, this QM-based approach incurs a substantial computational cost, limiting its applicability to small series and prohibiting quick, interactive ideation. This work explores a set of machine learning models (Random Forest, Lasso, XGBoost, Chemprop, and Chemprop3D) to learn calculated log P values on both a public data set and an in-house data set to obtain a computationally affordable, QM-based estimation of drug lipophilicity. The message-passing neural network model Chemprop emerged as the best performing model with mean absolute errors of 0.44 and 0.34 log units for scaffold split test sets of the public and in-house data sets, respectively. Analysis of learning curves suggests that a further decrease in the test set error can be achieved by increasing the training set size. While models directly trained on experimental data perform better at approximating experimentally determined log P values than models trained on calculated values, we discuss the potential advantages of using calculated log P values going beyond the limits of experimental quantitation. We analyze the impact of the data set splitting strategy and gain insights into model failure modes. Potential use cases for the presented models include pre-screening of large compound collections and prioritization of compounds for full QM calculations.

6.
Sci Data ; 9(1): 273, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672335

RESUMO

Machine learning approaches in drug discovery, as well as in other areas of the chemical sciences, benefit from curated datasets of physical molecular properties. However, there currently is a lack of data collections featuring large bioactive molecules alongside first-principle quantum chemical information. The open-access QMugs (Quantum-Mechanical Properties of Drug-like Molecules) dataset fills this void. The QMugs collection comprises quantum mechanical properties of more than 665 k biologically and pharmacologically relevant molecules extracted from the ChEMBL database, totaling ~2 M conformers. QMugs contains optimized molecular geometries and thermodynamic data obtained via the semi-empirical method GFN2-xTB. Atomic and molecular properties are provided on both the GFN2-xTB and on the density-functional levels of theory (DFT, ωB97X-D/def2-SVP). QMugs features molecules of significantly larger size than previously-reported collections and comprises their respective quantum mechanical wave functions, including DFT density and orbital matrices. This dataset is intended to facilitate the development of models that learn from molecular data on different levels of theory while also providing insight into the corresponding relationships between molecular structure and biological activity.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Termodinâmica
7.
Mol Inform ; 41(10): e2200059, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577762

RESUMO

Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a step toward predicting binding sites in RNA and RNA-protein complexes, we employ three-dimensional convolutional neural networks. We introduce a dataset splitting approach to minimize structure-related bias in training data, and investigate the influence of protein-based neural network pre-training before fine-tuning on RNA structures. Models that were pre-trained on proteins considerably outperformed the models that were trained exclusively on RNA structures. Overall, 71 % of the known RNA binding sites were correctly located within 4 Šof their true centres.


Assuntos
Redes Neurais de Computação , Proteínas , Sítios de Ligação , Ligantes , Proteínas/química , RNA/metabolismo
8.
Phys Chem Chem Phys ; 24(18): 10775-10783, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35470831

RESUMO

Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like molecules currently renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we developed DelFTa, an open-source toolbox for the prediction of electronic properties of drug-like molecules at the density functional (DFT) level of theory, using Δ-machine-learning. Δ-Learning corrects the prediction error (Δ) of a fast but inaccurate property calculation. DelFTa employs state-of-the-art three-dimensional message-passing neural networks trained on a large dataset of QM properties. It provides access to a wide array of quantum observables on the molecular, atomic and bond levels by predicting approximations to DFT values from a low-cost semiempirical baseline. Δ-Learning outperformed its direct-learning counterpart for most of the considered QM endpoints. The results suggest that predictions for non-covalent intra- and intermolecular interactions can be extrapolated to larger biomolecular systems. The software is fully open-sourced and features documented command-line and Python APIs.


Assuntos
Química Farmacêutica , Teoria Quântica , Aprendizado de Máquina , Redes Neurais de Computação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...